
https://www.ida.liu.se/~TDDI11	 Embedded	Software	 1	

Introduction	
Often	embedded	systems	are	designed	to	be	small,	 low	weight,	low	power,	low	energy,	low	cost,	real-
time,	 distributed,	 reliable,	 durable,	 safe,	 and	 secure.	 In	 general	 this	means	 the	 simplest	 systems	 are	
usually	preferred	and	whatever	hardware	and	software	that	is	unnecessary	is	taken	away	from	the	system	
and	its	development	process.	Therefore,	embedded	engineers	frequently	face	limited	resources	and	deal	
with	 low-level	programming	as	well	 as	bit-operations	on	 small	processors	and	microcontrollers.	Many	
embedded	 systems	 are	bare-machine,	meaning	 there	 is	 no	operating	 system.	 Such	 systems	 are	often	
programmed	in	assembly	and	C.	

The	concepts	that	do	not	need	to	be	practiced	on	a	bare-machine,	are	performed	on	the	host-machine.	

In	the	following	we	start	with	a	hello-world	program	on	the	bare-machine	in	chapter	1.	We	will	see	how	
a	simple	C	code	is	cross	compiled	to	run	on	a	machine	without	OS.	We	use	Qemu	virtualization	for	the	
labs,	 but	 the	 overall	 process	 is	 similar	 to	working	with	 a	 physical	machine.	 Chapter	 2	 focuses	 on	 bit	
operations	 in	 C	 on	 the	 host	 machine	 (without	 cross	 compilation	 and	 Qemu).	 Chapter	 3	 focuses	 on	
peripherals.	At	first,	we	work	with	timers	on	the	bare-machine.	Then	we	work	with	input	preprocessing	
on	the	host	machine.	

Chapter	4	explains	how	to	mix	C	code	with	assembly.	This	may	be	needed	to	design	a	superior	system	by	
writing	the	crucial	segments	of	the	code	directly	in	assembly.	Chapter	5	explains	polling-	and	interrupt-
based	 I/O	operations	as	well	as	serial	communication	between	devices	 (virtually	on	Qemu).	Chapter	6	
explains	 non-preemptive	multi-threading	 on	 the	 bare-machine.	 Chapter	 7	 explains	 preemptive	multi-
threading	as	well	as	handling	mechanisms	for	shared	resources,	on	the	bare-machine.	Chapter	8	focuses	
on	Finite-State	Machine	(FSM)	representation	of	systems	on	the	host	machine.	

Feedback	Questionnaire	
Please	 include	 answers	 to	 the	 following	 questions,	 at	 the	 end	 of	 each	 chapter	 (along	with	 the	 other	
deliverables):	

• Which	program	are	you	in	(DI,	EL,	…)?	
• What	are	the	positive	aspects	of	this	chapter?	
• What	can	be	improved?	
• How	much	time	did	it	take	to	complete	(in	hours)?	
• Any	other	comments?	

This	questionnaire	can	be	submitted	anonymously.	You	may	write	the	lab	assistant’s	name	and	send	it	
through	mail-slot	(brevinkast)	in	the	IDA	mailroom	(postrum).	Alternatively,	feel	free	to	hand	them	directly	
to	the	lad	assistant	or	email	them.	

	 	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 2	

	

Notes	
The	distribution	of	the	deadlines	does	not	exactly	correspond	to	the	time	required	for	each	chapter	to	
complete.	The	deadlines	are	displayed	on	the	lab’s	web	page.	

Please	read	the	related	chapter	in	the	lab	manual	and	the	required	resources,	early	on,	so	that	you	can	
estimate	the	required	time	and	plan	ahead	of	the	deadlines.	

Please	do	not	 jump	over	 the	 chapters.	 The	 chapters	are	arranged	 in	 such	a	way	 that	 the	earlier	ones	
provide	information	and	training	that	is	required	for	the	later	chapters.	

Please	read	each	chapter	completely	to	the	end,	before	you	start	working	on	the	assignment.	Different	
chapters	might	be	organized	differently.	

The	 number	 of	 pages	 in	 a	 chapter	 does	 not	 correspond	 to	 the	 time	 required	 for	 completing	 the	
assignments.	Some	small	chapters	may	require	you	to	study	a	lot	from	other	resources.	

Please	arrive	on-time	in	the	lab	sessions.	

The	lab	assistants'	time	(for	questions	and	demo)	is	prioritized	for	the	students	that	are	working	in	sync	
with	the	deadlines,	as	well	as	the	students	that	arrive	on-time	in	the	lab	session.	

You	may	skip	questions/assignments	marked	as	“optional”.	But	once	you	decided	to	do	them,	you	must	
complete	them	correctly.	We	may	ask	you	to	correct	them	in	order	to	pass.	This	is	to	prevent	learning	
wrong	information.	

Qemu:	Use	Ctrl+Alt	to	release	the	mouse	(pointing	device).	Qemu	grabs	the	mouse	when	one	clicks	inside	
its	window.	This	may	not	work	in	ThinLinc.	

Working	Remotely:	ThinLinc	might	not	work	properly.	Please	use	ssh	as:	

ssh -X userID@remote-und.ida.liu.se

	

Authors’	and	Assistants’	history:	
2016,	Nima	Aghaee,	Ahmed	Rezine	

2015,	Ke	Jiang,	Adrian	Horga	

2014,	Ke	Jiang,	Adrian	Horga	

…	

	

	 	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 3	

	

Chapter	1 Bare-Machine	Hello	World	

1.1 Host	and	Target	Machine	

Typical	embedded	devices	do	not	provide	software	development	friendly	environments	such	as	editors,	
compilers,	or	debuggers.	They	might	not	even	have	a	console	or	an	operating	system.	Therefore,	most	of	
the	time,	the	software	development	process	 is	carried	out	on	ordinary	desktop	workstations	with	full-
fledged	integrated	development	environments.	The	development	workstations	are	called	host	machines,	
while	the	embedded	device	is	called	the	target	machine.	

1.2 Cross-Compilers	

The	host	machines	are	equipped	with	cross-compilers,	 i.e.	compilers	that	do	not	produce	code	for	the	
machine/architecture	they	are	running	on	but	for	a	different	machine/architecture.	For	example,	if	the	
host	computer	is	an	Intel	x86	with	Windows,	a	cross-compiler	would	be	a	compiler	that	creates	code	for	
an	Intel	x86	with	Linux.	A	different	example	would	be	the	case	when	the	host	is	an	Intel	x86	with	Linux	
and	the	target	is	a	Sun	Ultra	SPARC	with	Linux.	In	the	first	example,	the	hardware	architecture	is	the	same	
but	the	interfaces	to	the	hardware	(the	operating	systems	running	on	the	host	and	target	respectively)	
differ.	In	the	second	example,	the	hardware	architecture	differ	but	the	operating	systems	are	the	same.	
A	third	example	illustrates	the	case	in	which	both	hardware	architecture	and	operating	system	differ	from	
host	 to	 target:	 the	 host	 is	 an	 Intel	 x86	with	Windows,	while	 the	 target	 is	 an	 ARM	processor	with	 no	
operating	system.	

1.3 Emulators	

Code	developed	on	the	host	for	the	target	cannot	be	run	natively	on	the	host	for	testing	purposes.	An	
alternative	would	be	to	upload	the	code	on	the	target	computer/board	and	to	test	it	there.	This	approach	
may	have	several	limitations.	For	example,	the	target	could	not	be	present	at	the	developing	site,	or	the	
target	 (or	 the	 uploading	 process)	 is	 very	 slow	 which	 would	 render	 the	 testing	 process	 very	 time	
consuming.	Therefore,	in	many	cases,	the	software	is	debugged	and	tested	on	the	host	machine	by	making	
use	of	an	emulator,	i.e.	a	program	that	mimics	the	behavior	of	the	target	machine.	

Depending	 on	 the	 host	 and	 target	 platforms,	 the	 emulation	 can	 be	 slower	 or	 faster	 than	 the	 actual	
execution	 on	 the	 embedded	 platform.	 The	 emulated	 execution	 can	 be	 slower	 due	 to	 the	 emulator	
overheads.	On	the	other	hand,	the	emulator	may	be	running	on	a	much	faster	host	machine.	For	example,	
the	host	can	be	an	Intel	x64	at	2.6GHz	while	the	target	is	an	8-bit	microcontroller	at	4MHz.	

1.4 Target	Machine	in	this	Lab	

The	target	machine	is	an	Intel	x86	PC	with	no	operating	system	(bare-machine).	The	embedded	software	
will	run	directly	on	the	hardware	(Qemu	virtualization)	without	any	help	from	an	operating	system.	The	
software	will	be	loaded	to	the	target	from	a	standard	boot	device	(floppy	disk).		

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 4	

1.5 Work	Flow	

Copy	“hello	world”	from	“skeleton”	directory	to	your	local	directory	(we	assume:	userID/TDDI11/	hello_world)		

cp -r /home/TDDI11/lab/skel/hello_world /home/userID/TDDI11/hello_world

Please	note	that	userID	is	the	user	name	that	you	use	to	login	to	the	lab	computers.	Now	let	us	change	to	
the	new	directory	and	check	it:	

cd /home/userID/TDDI11/hello_world

ls

Check	to	see	if	“hello_world”	directory	contains	the	following:	

• main.c	
• Makefile	
• floppy.img	
• mtools.conf	
• makeNrun.sh	

The	source	code	is	in	“main.c”.	Compiler	and	linker	commands	are	listed	in	“Makefile”.	The	binary	file	that	
will	be	generated	by	this	process	must	be	placed	in	the	floppy	image	file	“floppy.img”.	Placing	the	binary	
file	into	the	floppy	image	must	be	done	with	“mcopy”	command.	The	necessary	settings	for	“mcopy”	are	
defined	 in	 the	 configuration	 file	 “mtools.conf”.	 The	 floppy	 image	 is	 used	 to	 start	 the	 virtual	machine	
“Qemu”.	The	overall	process	 is	described	in	the	script	“makeNrun.sh”.	The	details	are	discussed	in	the	
following.	

1.5.1 The	Source	Code	
Open	the	“main.c”	 file	 (for	example	with	“cat”	 if	you	only	want	 to	check	 the	content.	We	can	use	 for	
example	“nano”	or	“gedit”	if	we	want	to	edit	the	content):	

cat main.c

Or	

gedit main.c &

The	code	is	as	follows:	

#include <libepc.h>

int main(int argc, char *argv[])

{

ClearScreen(0x07);

SetCursorPosition(0, 0);

PutString(">>>>>>> Empty … Skeleton <<<<<<<\r\n");

return 0;

}

This	application	will	run	without	using	an	OS.	A	library	is	used	to	provide	some	basic	functionality.	In	most	
C	programs	strings	are	displayed	by	means	of	the	“printf”	function.	“Printf”	is	part	of	the	standard	C	library	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 5	

“libc”.	“Printf”	 typically	 is	 implemented	by	the	operating	system	call	“write”.	As	 there	 is	no	OS	on	the	
target	platform	here,	we	cannot	use	“write”	and	“printf”.	Therefore,	we	use	the	function	“PutString”	from	
the	“libepc”	library,	which	communicates	uses	functions	such	as	“inport”	and	“outport”.	These	will	directly	
communicate	with	the	bare-machine.	

1.5.2 Cross	Compilation	

The	target	machine	architecture	is	“i386-elf”.	The	“Makefile”	includes	instructions	for	cross	compiling	the	
main.c	file	and	linking	it	with	the	libepc.	The	compiler	is	installed	in	the	following	directory:		

/sw/i386-elf-gcc-4.9.0/bin/i386-elf-gcc-4.9.0

The	linker	is	installed	in	the	following	directory:	

/sw/i386-elf-gcc-4.9.0/bin/i386-elf-ld

Usual	compilers/linkers	will	generate	an	executable	program	suitable	for	a	specific	operating	system.	In	
such	 an	 implementation,	 the	 library	 codes	 are	 not	 integrated	 in	 the	 generated	 program	 file	 (shared	
libraries	are	typically	linked	in	by	the	OS	when	the	program	is	running).	However,	for	this	bare-machine	
implementation,	a	“raw”	application	with	all	needed	codes	integrated	in	one	binary	application	file	must	
be	generated.	The	object	files	and	libraries	are	combined	in	a	single	binary	file,	“embedded.bin”.	In	order	
to	generate	this	file,	type:	

make

Then,	do	

ls

	Check	if	“embedded.bin”	file	is	generated.		

1.5.3 Copying	to	Floppy	
The	 binary	 file	 must	 be	 placed	 in	 the	 floppy	 (we	 use	 a	 virtual	 image).	 A	 prepared	 floppy	 image,	
“floppy.img”,	is	provided	in	the	skeleton	that	we	copied	at	the	beginning.	There	is	a	skeleton	binary	file	in	
the	floppy	image	that	must	be	replaced.	Since	the	desired	binary	file	must	be	placed	to	the	floppy	under	
specific	 considerations	 “mcopy”	 command	 is	 used.	 The	 configuration	 file	 “mtools.conf”	 defines	
“floppy.img”	as	drive	“a:”.	To	pint	the	“mcopy”	to	the	proper	configuration	file,	do:	

export MTOOLSRC=/home/userID/TDDI11/hello_world/mtools.conf

Place	the	newly	generated	“embedded.bin”	into	drive	“a:”	

mcopy embedded.bin a:

A	question	will	be	asked	by	“mcopy”	about	what	to	do	with	the	existing	binary	file.	This	is	the	skeleton	
binary	that	you	must	overwrite	with	your	newly	generated	binary	file.	Select	“o”.	

	 	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 6	

	

1.5.4 Starting	Qemu	

The	final	step	is	to	load	the	application	in	the	emulator	(Qemu).	The	file	that	represents	the	floppy	disk	
must	be	specified	for	Qemu	to	boot	the	system:	

qemu-system-i386 -fda floppy.img

A	new	window	for	Qemu	will	open.	The	application	will	be	executed	printing:	

>>>>>>>	Empty	Floppy	Used	as	Skeleton	<<<<<<<	

Now	you	can	close	Qemu	window.	

If	you	click	inside	Qemu	window,	it	grabs	the	mouse.	Use	Ctrl+Alt	to	release	the	mouse.	This	may	not	
work	in	ThinLinc.	

1.5.5 The	Script	to	Make	and	Run	

There	is	a	script	with	required	commands	to	simplify	the	process	that	we	did	manually	in	the	previous	
sections	(1.5.2	to	1.5.4).	In	order	to	run	the	script	type:	

makeNrun.sh

1.6 Evaluation	

1.6.1 Assignments	

Modify	the	program	(main.c)	to	write	the	date,	your	names,	and	your	student	IDs	instead	of	“Skeleton”	
message.	Start	from	1.5.1	and	edit	“main.c”.	Then	you	can	either	take	step	by	step	from	1.5.2	to	1.5.4,	or	
use	the	script	as	described	in	1.5.5.	

1.6.2 Demonstrations	

Unlike	the	following	chapters,	you	do	not	need	to	demonstrate	your	work	to	the	 lab	assistant	 for	 this	
chapter.	

1.6.3 Deliverables	
• Feel	free	to	give	feedback	according	to	the	questionnaire	

Email	your	deliverables	to	your	lab	assistant.	Write	in	the	subject:	TDDI11	Chapter	1.	

	

	

	

